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Three separate storage technologies able to serve gridded data were selected

for comparison of performance in terms of providing speed and expandability to a

crop disease forecasting system. The three storage technologies chosen were

PostgreSQL (a relational database management system), MongoDB (NoSQL system),

and netCDF files. Speed tests were performed for each by running two different crop

disease risk forecasting models requiring data of different spatiotemporal resolutions.

Multiple trials were done using different storage hardware. Systems were then

qualitatively compared for expandability by noting the process involved in adding

successive crop disease forecasting models.

It was found that due to different respective limiting properties of each

implementation of all three storage technologies the speed differences using

traditional storage hardware were few. Given this, it would be possible to further fine-

tune a system using netCDF files for speed gains. Qualitative notions of expandability

featured by the different storage technologies then become a significant factor when

making a choice between the three to use for a crop disease forecasting system. Both

PostgreSQL and MongoDB storage technologies offered better expandability in terms

of difficulty of adding additional models compared to the system using netCDF files.
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CHAPTER I

INTRODUCTION

Computationally intensive research that is able to address real world problems

is enabled by relevant quality data, retrieval of that data, processing of that data, and

storage of derived outputs. Informational needs have to be met before many of

today's global, interdisciplinary problems can be effectively solved. Methodologies of

storage and use of data impact the ways in which research is carried out and can also

impact how much benefit is derived from the results. Applied data management in a

research project changes the efficiency of analysis and supports effective problem

solving which in turn affects decision support that is provided to end users.

This proposed research recognizes a methodology gap hindering the ability to

use particular data in a cost effective way for research aimed at reducing impacts of

crop diseases. Data grids containing weather variables used to forecast crop disease

risk are available from the National Weather Service. These grids may improve

forecasts providing agronomic and environmental benefits. For example, farmers

could be better aided in the decision making process, and could apply pesticides at

times and rates that are most beneficial to the farmer and consumer. Crop disease risk

forecasts attempt to limit the environmental effects of pesticides while sustaining the

economic benefit of a successful harvest.

Data grids from the National Weather Service containing forecasted weather

variables are applicable to more than one crop disease risk forecasting model. Taking
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this into account, along with the large number of models available for different crops

and crop diseases, it would make sense to store and process these grids in such a way

that grids could be reused with lowered research cost outlay with each additional crop

disease risk model.

One key choice in system design is the storage technology chosen for the

system. The storage technology as a subsystem should support the goals of the overall

system. Therefore, is it important for storage systems to be assessed in terms of the

likelihood of each to lend features leading to lowered research costs and fast

development of quality models.

Sections of this document detail the problems this research addresses, the

purpose of research, objectives, literature review, methods, and results. A produced

thesis and presented results would partially fulfill requirements leading to a Master of

Arts Degree in Geography: Geographic Techniques. This research involves a

comparison of storage technologies used to store gridded data from the National

Weather Service in addition to gridded model outputs used in a Geographic

Information System forecasting crop disease risk.

Problem Statement

A layered problem can persist because of related data, technology, or

methodology gaps. New methodologies of processing and storing the gridded forecast

data available from the National Weather Service (NWS) are necessary to enable

application of those data grids to crop disease risk forecasting systems. The layered
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problem is as follows: 1)crop diseases significantly impact agro-economics, 2)

forecasting crop disease risk at point locations has inherent weaknesses, 3) gridded

forecasts are possible solutions, 4) there is difficultly in applying large volumes of

temporal griddeddata within currentGIS systems, and 5) quick unplanned solutions

to the above may fail to realize potential benefits of effectively applying gridded data.

An overarching goal of my research is to develop quality processing and data storage

methodologies for gridded weather forecasting data used within a GIS.

Crop diseases impact agronomics and the environment. For example, Potato

late blight is estimated to cost growers $287.8 million annually with $210.7 million

due to impacts on yield and $77.1 million in fungicide costs (Guenthneret al. 2001).

Losses of the barley crop due to Fusarium head blight from 1998-2000 is estimated to

be $136.4 million, or 25.7% of the total value of barley production (Nganje et al.

2002). In Georgia peanut leaf spot in 2009 caused $6.0 millions in crop damage and

$26.8 million in chemical control costs (Williams-Woodward 2010). Losses due to

crop diseases can be reduced by fungicides but fungicides adversely impact humans

and the natural environment. Crop disease risk forecasting systems advise when and

how much fungicide to apply, retaining value of crops while limiting yield production

costs related to fungicide. A lowered amount of fungicide applied also reduces

adverse impacts on the environment.

While traditionally risk estimates have been provided at point locations, crop

disease risk forecasts provided at point locations are not always applicable to a given

farm location. If a farm is located far from city centers or airports where detailed
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forecasts are commonly provided, accuracy of those forecasts applied to the farm will

be reduced. City centers commonly experience urban heat island effects and rural

areas tend to be cooler and have higher relative humidities. Topographies involving

factors like distance to water bodies and elevation changes will impact local

applicability of weather forecasts.

A solution to issues inherent with point-based forecasts is providing gridded

crop disease risk forecasts. These require either interpolation of point based inputs or

outputs, or ideally, gridded forecast inputs. Interpolation of point-based inputs may be

skewed by local effects similarly to point based forecasts. Points in urban areas may

reduce accuracy in rural areas. Underrepresentation of data in certain areas changes

overall accuracy and distorts the prediction field. The best possible solution may be

to find applicable gridded climate variable forecasts with suitable resolution.

Gridded forecasts are available from the NWS in 5km spatial resolution and

are distributed in Gridded Binary (GRIB) format. The GRIB format is not directly

useable in the most common commercial GIS, ESRI's ArcGIS. Crop prediction

models use this data in dimensionally large x, y, and time axes. For example, a model

predicting risk of Fusarium head blight of barley using raster data with eight variables

over five days with hourly data would require the processing and storage of 960

rasters per forecast day. Lining up the geometry of 960 rasters for multiple

calculations may take longer than necessary especially if the geometry of each raster

does not change in a given grid specification. A better way to store and process this

multi-dimensional data is possible.
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Newly introduced gridded data from the NWS are likely to continue to

increase in resolution over time and include new variables calculated in different

ways. Some examples of grids and spatial resolutions the NWS has made available

include National Digital Forecast Database (NDFD) grids at 5km and Gridded Model

Output Statistics (GMOS) at 5km and 2.5km resolutions. GMOS grids are available

to download as they are issued but are not archivedfor later access by the public. As

new formats and higher resolutions are introduced, new grids should be able to be

used and tested in terms of output accuracy. If planned carefully, data storage and

processing methodologies should allow for the addition of new grids without much

increasedresearch overhead. Available grids should then be applicable to various crop

disease research models. Possible new data storage and processing methodologies of

gridded NWS data should realize gridded crop disease forecasting with higher

accuracy for varied crops with reduced research overhead for each added crop model.

A quick solution may not take into account the benefits of a good solution. For this

reason to effectively apply weather grids to crop disease forecasting solutions should

be designed in ways striving to approach currently unidentified best practices.

Purpose of Research

The subsystems of a GIS are functional pieces of a GIS. Variability of these

subsystems tends to be wide and impacts overall GIS functions. Focusing on storage

technologies as one key subsystem, the purpose of this research is to identify a

storage technology lending itself to a system enabling best practice methodologies to
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process crop disease risk forecasting modelsusing gridded data as inputsas well as

storing derived outputs. Grids should be stored andprocessed in methodologies

conducive to reducing research overhead when applying the same stored data to

multiple models. Model forecasts should be produced in a timely manner to hasten

the model prototyping stage. This research will identify effective storage technologies

lendingthese features to a gridded crop disease forecasting system.

Possible Effective Storage Solutions

During the summer of 2011 I participated in a netCDF workshop led by

Unidata, the group who created netCDF. The workshop contained an overview of the

netCDF technology. Using the netCDF storage format, a single file, representing a

time span of a growing season or month, can contain all data and outputs of different

crop models and store all variables with different dimensional attributes. NetCDF, as

an example of a scientific data file format seems to have potential within a system

likely representing a solution using best practices for storage and processing gridded

data.

Relational database management systems (RDBMS) have been commonly

used to store geographic information in the past. Spatial and scientific data are usually

retrofitted for table schemas originally designed to hold financial, commercial and

organizational types of non-spatial data. Even though a retrofit is involved in holding

spatial data, during the prior decades technologies within relational database

management systems have emerged to increase the speed of storing and querying this



www.manaraa.com

spatial data. For these reasons a relational database may also have potential within a

system likely representing a solution using best practices for storage and processing

of gridded data.

Increasing volumes of different types of data needing to be stored and served

out to the Internet have made apparent certain weaknesses in RDBMS. One

weakness is that RDBMSs tend not to offer "horizontal" expansion. In a horizontal

expansion additional low-cost computers as servers can be cheaply added to an

existing cluster of low-cost computers to be used as a single server with that cluster

utilized to serve a single large dataset. The feature of horizontal expansion allows

NoSQL databases to better scale when dealing with expanding data volumes found in

Internet applications and potentially scientific applications. RDBMS tend to offer

vertical expansion. An example of vertical expansion would be the act of adding

additional resources like memory to a single machine. Vertical expansion is limited as

the single machine may be upgraded to a maximum before another single machine

with higher maximums is purchased to replace the former machine. The sheer number

of data transactions involved in blogs, social networking, and online shopping carts

has also made another weakness apparent. There is a distinct per transaction

slowdown involved with the significant overhead of transaction quality assurance

involved in RDBMS needed in financial systems. As a reaction and a solution to store

the big data involved in today's Internet applications, developers have created and

turned to NoSQL solutions. Most NoSQL solutions have reduced transaction

overhead and are able to horizontally expand. NoSQL solutions also forego a strict
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table schema used to store data. Since the table schema is abandoned and spatial-

temporal data needs a retrofit to fit within the table schema, the alternative schemas

introduced in NoSQL solutions should be considered. This is in addition to reduced

transaction overhead; both of these features may be leveraged in a grid storage

system.

In order to compare and identify best practices three types of systems running

the same crop forecasting model will be created. Systems using a RDBMS, a NoSQL

system, and a scientific file format data storage solutions will be created. Time trials

running the same model and season combination will be used to test the three data

storage solutions for speed. Comparative expandability of systems using the different

storage methodologies will be then qualitatively assessed by reusing the same

national data stored in those formats and applying that data to a second system

running a different crop disease model.

Objectives

This comparison of storage technologies for gridded crop disease forecast

requires meeting the following objectives. The first pair of objectives is methods

related and involves design and implementation of system test cases to be compared.

The second pair of objectives involves trials and assessment of those implemented

systems and is related to research results.
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Objectives Relating to Methods

1. Assess alternative solutions within Relational Database Management System,
NoSQL, and Scientific File Format Types. Choose three to compare, one of
each type.

2. Create three different data storage and processing systems able to apply the
same stored gridded forecast and validation data to different crop disease
forecasting models.

Objectives Relating to Results

1. Quantitatively test the processing speed of a crop disease forecasting model
for each of the three systems.

2. Qualitatively assess aspects of expandability among the three systems by
applying the same gridded data to a second crop disease forecasting model.

Expected Outcomes

Because of inherent capabilities of scientific data files, including internal

descriptive attributes tagging of data and speed of retrieval of subsets of data, use of a

scientific data file format will likely best meet speed requirements of desired data

storage and processing methodologies. The speed of a system using a scientific data

file format will likely be superior to a system using a NoSQL data store or a RDBMS

as storage mediums. In terms of expandability, the NoSQL data store should offer

flexibility in the data schema used leading to the desired expandability. Use of either

a NoSQL datastore or a scientific data file format should streamline testing of

prototype systems where different datasets are applied to different risk models.
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This research should lead toward systems that greatly streamline both the

addition of crop forecasting models as applied to available NWS gridded datasets as

well as the addition of possible future gridded datasets. The perspective of different

storage systems being able to lend strengths of the format to processing and file

format storage methodologies, enabling expandability and speed of processingof

those methodologies, guide this research. This perspective will be tested and results

will be reported with expandability used as a qualitative metric and speed as a

quantitative metric.

10
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CHAPTER II

LITERATURE REVIEW

This literature review is divided into four sections. The first section considers

the available gridded data from the National Weather Service (NWS) to be used in a

crop disease forecasting system. Potential applicability of that gridded forecasting

data to crop disease forecasting systems is established. In the second section general

storage system types usable for GIS are next considered to provide base knowledge of

those types and inform the choice of storage technology to implement among

examples of each type. The second section also informs the design of data schemas I

implement when the system is created. The third section covers the choices among

types and why those choices were made. The fourth section considers standalone

raster files and why they were not chosen as a solution to implement and compare in

trials. The final section takes the ideas presented in this chapter's previous sections

and details which technologies where chosen given that knowledge. Afterward, the

following chapter covering methodology will detail how those chosen technologies

will be used and assessed.

Gridded Weather Data Applicable to Crop Disease Forecasting

Gridded datasets offered by the NWS have increased in accuracy over time

(Myrick and Horel 2006; Ruth et al. 2009). In many cases they are better than

previous forecast Model Output Statistics (MOS) available for the same point

11
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locations (Ruth et al. 2009). A system able to incorporate these and future NWS grids

has the potential to increase accuracy in final risk forecasts for a variety of

applications.

Compared to gridded data, due to past availability of point forecasts and

observations, crop risk forecasting has tended to be made at point-based locations.

Within the last ten years the NWS has made higher resolution gridded forecasting

data available. A few recent studies have detailed usage of this NWS data to predict

crop diseases: spread of soybean rust in Minnesota (Tao et. al 2009) and strawberry

fruit rot in Florida (Pavan et. al 2011).

Storage Technologies in Systems Able to Serve Geographic Data

The following will examine three storage system technologies for storage and

retrieval of of the gridded dataset described above. Relational Database Management

Systems (RDBMS) are first covered, then NoSQL databases, and finally scientific file

formats. Since methodologies for RDBMS use in a GIS is established I cover some

methodologies to inform system design of a crop disease forecasting system using a

RDBMS. Extra detail is provided for types of NoSQL databases because the category

is a catch-all including different subtypes. A choice for data storage technology can be

made among the NoSQL subtypes and this coverage of NoSQL subtypes informs that

choice.

12
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Relational Database Management Systems for GIS

RDBMS Brief Background

The relational model was proposed by E.F. Codd (Codd 1970). In the

relational model tables contain records of uniform fields. Records usually include

some fields used to uniquely identify those records and allow for referencing specific

records across tables. All of the early basics underpinning relational database

technology and implementation appeared in published form in the 1970s. In the 1970s

the practice of indexing individual records using stored values in chosen fields within

individual records to speed up access to data began. Indexes made use of relational

databases feasible. Without indexes records would have to be searched in order to

find a target record. The B-tree index (Bayer and McCreight 1972) is the pre-cursor to

the B+-tree, the most commonly used index today. The SQL language was also

proposed (Chamberlin and Boyce 1974). The ER-diagram, a data modeling tool

connecting the entities' different relationships in a database was also created (Chen

1976). These basics still underpin relational database technology and implementation

today.

Data Models for RDBMS and GIS

GIS software packages became widely established in the late 1980sand

1990s. Underlying data models were an important consideration in the early period

because data models involve some levels of geographic abstraction for both raster and

13
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vector data (Goodchild 1992). Beyond the question of raster vs. vector is the choice

of unstructured and unmanaged stand alone data files vs. a relational database for data

storage and retrieval of either raster or vector data. If the relational database is

chosen, the data model, in this case the sets of tables and fields used to store different

data enabling the abstraction of a particular real world system must also be chosen.

For example, how are tables in the relational database model going to be used to store

the variables of a location needed to solve a problem? If the variables change quickly

over time the temporal element must be considered because the amount of data

related to a single location quickly increases and cannot all be reasonably stored in a

single record using instances of the traditional float datatype. These samplings, or in a

system using forecasted data, projections, have a fixed locational dimension and a

differing temporal dimension.

A look at the Arc Hydro data model in terms of how spatial and temporal data

are stored in tables partially informs the structure of a data model for a crop disease

forecasting system also using tables. The Arc Hydro data model is a prescribed set

collection of tables and fields used to abstractly represent and enable modeling of

hydrological systems. The Arc Hydro extension used by the common GIS software

ArcGIS analyses and produces hydrological systemdata in the Arc Hydro data model.

I used the groundwater versionof the Arc Hydro data model as an informing source

(Strassberg, et al. 2011) while designing the tables of my early versions of a crop

disease forecasting system using a RDBMS.

14
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The Arc Hydro model stores temporal data including flow measurements at

the same location repeated over time as well as changes in channel banks stored over

time (Maidment 2004). Date/time fields in multiple borehole records list when the

borehole was taken, the depth of the borehole, and a field tied to an unchanging

recordof the borehole's geographical location. Multiple tables containing data and

metadata about the observation are kept to hold information related to the borehole

made at that time. Here a date/time field exists for each observation record along with

locational attributes (Chesnaux, et. al. 2011). This is a snapshot time approachas a

vector at a single x-y location, but includes depth data.

Snapshot coverages in the instance of remote sensing data are typically made

in raster format (Goodchild 2005), but attributes with vector representations can be

stored in tables with vector geometry linked to that data. Patterned after the Arc

Hydro data model's handling of spatiotemporal data my early version of a crop

disease forecasting system held the unchanging geometry of grid cells separate from

the weather data associated with each individual grid cell. The early version used a

Microsoft SQL Server as the background RDBMS along with ArcSDE to provide

access to data from within ArcGIS. Running models was done by data matched by

cell id and a server-side ArcSDE table view joined all pieces of the data to associated

cell geometry appearing as a table of slices of overlapping grid cells to the ArcGIS

desktop client. A definition query on the client would further subset the data by single

time slices. Redraw and table access was quite fast when using ArcSDE despite the

volume of data.

15
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Techniques for representing general data in non-redundant and compact ways

which limit work needed to update records when attributes within a relational

database change when changing of the values of that data is pretty well established as

database normalization has been around since the 1970s (Codd 1970 & 1974).

Establishing data models for scientific data with a both static spatial dimension and

expansive temporal dimensions in a relational database management system is a little

more difficult. Recently there has been a push in the big data computing environment

against standard relational tables applied to all data storage problems in an anti-one

size fits all movement (Stonebraker and Cetintemel 2005). A database created with

the main intention of storing multi-dimensional arrays was created and tested against

a traditional relational database management system. Comparing against a traditional

relational database management system the multidimensional-array database was

found to be 102.5 to 119.1 seconds faster in a single dot product calculation for

dimensionally tagged data with speed differences depending on the number of

dimensions involved (Stonebraker, et al. 2007). Storing data in array formats has been

found to be a good solution in certain applications, especially for storing

dimensionally rich scientific data. Calculations are fast and redundant dimensional

metadata is reduced.

Slices of the weather data in grids could be converted to and used as raster in a

GIS and raster data in a GIS could be seen as XY arrays with spatial tags. In addition

to normalizing tables and adding tables and fields which enable the storage of time

dimensional data, storing variables from the same dataset in arrays should speed up

16
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processing of crop disease forecasting model data, and given the volume of data,

doing so should be required in a system providing gridded crop disease risk forecasts

with a relational database management system used for storage. Extending the data

model of my early version of a crop disease forecasting system using a relational

database, arrays should be incorporated in subsequent versions. To be discussed later,

this will limit relational database software choices to Oracle and PostgreSQL, two

popular packages supporting array data types. RDBMS that support arrays are few

because an un-extended Structured Query Language (SQL) that is used with most

RDBMS was not meant to handle arrays. The array concept is against the original

RDBMS data schema with field intended to contain granular data rather than groups

of data.

NoSQL Databases for GIS

What are NoSQL Databases?

The 'No' in NoSQL databases is commonly said to be short for 'Not only'.

Usually though, the 'No' can be taken literally. In most cases a NoSQL database does

have a query and operational language to do searches, inserts, updates, and deletes on

data, but that language does not follow SQL syntax. Besides the lack of standard

SQL, a good indicator of a database being a NoSQL database is the database does not

rely on a logical data storage schema consisting of tables of fields uniform across

records. The SQL language was made to interact with databases holding tables of

17
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uniform fields and the NoSQL databases's lack of traditional tables makes a modified

or new query language necessary.

Data schemas used to replace uniform tables vary by each NoSQL database

but are categorized into four main types. The four main types ofNoSQL databases

are: key-value pair, column family, document store, and graph database (Stainer

2010). The popularity of NoSQL databases are fairly recent, beginning around 2009,

and serve as a general part of the solution to the 'big data' problem. Functionality

focused on providing ways to store, index and query spatial data has slowly been

introduced to the feature set of a few of the NoSQL databases.

When a geographer thinks of the word "database" tables of records having

uniform fields are what typically come to mind. In this case the conception of

database really equates to a relational database rather than a general type of database.

The possible utility and use of non-relational databases may be slow to catch on

because the relational database has been around for decades and it is the technology,

in addition to separate data files, usually used to store large amounts of digital

geographic data in a structured schema.

Because of the timeliness of the technology there was, as of December 2012,

very little academic literature on NoSQL databases used to store spatial data. A

Google Scholar search of the terms 'Nosql' and 'GIS' only returns 161 results and

most are not directly applicable to GIS applications. NoSQL itself has initially been a

corporate phenomena with corporations and employees publishing in the form of

journal articles and white papers about engineered or applied NoSQL solutions to
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their cloud computing and big data problems. Examples include articles documenting

Google's BigTable in 2007(Chang F., et. al 2008) and Facebook's Cassandra in 2010

(Lakshman and Malik, 2010). A limited number of academic papers containing

examples of NoSQL applied to GIS followed these. Fortunately for the overview,

each of three useful results describing NoSQL/GIS systems covers a different main

type of NoSQL databases more applicable to GIS. The following paragraphs will

briefly explain each data schema of the four general types of NoSQL databases, list

NoSQL databases of each general type and the offered support of storing spatial data,

and in the case of the three more applicable data schemas one example each of the

NoSQL database type applied to a GIS.

NoSQL Database: Key-Value Pair

The data schema for key-value pair is simple; it is a list of lookup keys with

each key pointing to what is usually a single value. Instagram, a photo sharing

website, uses a key-value pair database to store a list of key-value pairs of unique

photoIDs as keys, with unique userlDs as the value. In this way a quick lookup is

done for each displayed photo/user pair. Key-value databases feature a fast simple

schema, but have limited applicability to store a GIS's entire dataset and lacks good

way a way to spatially index locations in relation to each other (Jonas, et al. 2010).

Some examples of key-value pair databases include Amazon Dynamo, Voldemort,

KyotoCabinet, and Redis. Amazon developed Dynamo to serve data in different
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systems comprising its online retail site including the shopping cart system. Instagram

uses Redis for photo-to-user lookup.

NoSQL Database: Column-Family Data Store

The column-family data store is a NoSQL database type. The data structure

consists of rows of data describing individual entities, but those rows in a column-

family can contain cells holding columns of more data related to the entity with each

column containing potentially more columns at lower tier depth. At any tier a

collection of columns can be denoted as a group forming a column family. On a hard

drive each group is stored physically in sequence. Speed of aggregations of an

individual column family is increased because of their physical location on the hard

drive.

To provide an example that illustrates a column-family data store, a column

family data store used to store customer information could denote a customer's

birthdate and gender as two key-value pairs making up a single column family.

Values would be stored on the hard disk in the form [1995-04-23, 'M'], [1994-12-7,

'F'], [1989-7-9,'F'], etc. If a query is done which asks the average age of all women,

the query system can go down the two variable column instead of having to move the

drive head across entire rows, requiring time to skip over the beginning and ending

data for individual records to retrieve only the birthdate and sex of an individual.

Column families at the highest tier within the same parent field share the same

number of indexed rows with each index belonging to a single entity. An entity's
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uniform index groups the data of that entity across column families. If the system

needed to search for all people born in 1994 and return a list of the names of those

people, if the «th row contained a birthdate in 1994, the nth row would be marked as

a positive match and the «th row of the column family containing the name would

then be pulled out.

Xiao and Liu (2011) provide an example of a column-family store applied to a

GIS. For GIS data the team had tiles of remote sensing images with each tile from the

same tile set having the same resolution with the set, completing a global coverage. If

the data were accessed in a viewer program, depending on the zoom level, a different

set would be drawn. This is similar to the access pattern and applied column family

database technology used by Google Earth.

The system by Xiao and Liu (2011) utilizes the general data schema of a

column-family type NoSQL database and works the properties of remote sensing

imagery into to that schema. By doing so, access speed gains can be realized by

arrangement of pieces of the data within the database. As their system was a

prototype the group did not test against a relational database so comparative metrics

are not available.

Other examples of column-family stores include Google's BigTable, HBase,

and the Facebook-developed Cassandra. Google's BigTable is used for both Google

Earth and Google Maps data, both GIS applications. HBase is used in Xiao and Liu's

remote sensing image storage system above.
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NoSQL Database: Document Store

The third type of NoSQL database is the document store. The document

within the document store consists of multiple key-value pairs with each value of any

data type. Each document describes a single entity. A typical document store

implementation example is an Internet message board. Each board post would be an

entity with author, contents and comments as different key-values within the

document. The value for the comments key comprises a list of comments. Each

individual comment can be "record-like" including content, a posting time, and

author key-values pairs. Everything related to a post is stored together.

"Two-Tier Architecture for Web Mapping with NoSQL Database CouchDB"

presented at a GIS conference in 2011 describes a document store used to store both

raster and vector data (Miller, et al. 2011). A document store offers significant

flexibility in the document paradigm as the entity can have any set of keys pointing to

values of different data types including lists, records, audio-visual media, or

geometries describing the entity.

The document store, unlike the column-family store stores all related

information about an entity sequentially on the disk drive. Because of this, a

document store is best used when all data about an entity is required to perform a task.

CouchDB and MongoDB are two popular document-store databases. Native

support for geographic datatypes and location indexing has been limited and differs

by each NoSQL database. Currently the GeoCouch add-on CouchDB has good

support for vector datatypes and includes support for single and multiple polygons,
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points, and lines. MongoDB directly supports only points. Both CouchDB and

MongoDB support only limited location indexing by r-trees. R-trees speed up queries

finding the closest points to a particular point.

Some things which differentiate CouchDB and MongoDB include CouchDB's

multi-version concurrency control which stores information updates separately before

they are committed to the main database. This allows multi-user access on snapshots

of data non-changing from the start of each user's access transaction. MongoDB

updates are performed in place without versioning. CouchDB itself can be used as a

webserver while MongoDB accessing is done through programs running requests on

web-servers or workstations.

NoSQL Database: Graph Database

A graph database is the forth type of NoSQL database. Graph databases

conceptualize and connect data records in a way that creates what in computer

science is called a graph network. A graph network consists of nodes (points) and

edges (lines connecting point nodes). In a graph database the nodes are entities and

the edges describe the relationships between any two entities. Properties are stored for

both nodes and edges. Graph databases were commonly developed and used for

Internet social applications with nodes containing information about users and the

edges containing information about the relationships between users. A graph database

comprises an implementation of a network in addition to the algorithms created to

traverse the network thereby answering distance queries. This makes a graph database
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apt to store a vector-based geographical transportation network (Baas 2012).

In order to compare performance between a relational database and a graph

database Bart Baas, a Master's student in a GIS program chose PostgreSQL(a

relational database) and Neo4j(a graph database), and compared each testing the

speed in loading and querying a road and feature point network. Stemming from the

quality of the location indexing implemented in PostgreSQL performing Euclidian

point-to-point queries was faster with PostgreSQL than performing the same queries

with Neo4j. However, Neo4j queries were faster when querying point-to-point

queries along the transportation network. This is because the network is already

connected within the database schema and does not have to be first built through

additional queries as it does in the relational database (Baas 2012).

NoSQL Database Discussion

A running theme in the NoSQL movement is that the nature of the data to be

stored and the pattern of data access should be taken into account when choosing the

technology to store and serve that data. If this process is well thought out the

strengths of the database technology facilitate faster data access of that particular type

of data. This is in contrast to the relational database concept where a single solution,

data tables in forms that reduce total disk space and redundancy is applied to various

data storage problems. Diminished focus on the data table also leads to designed data

schemas of systems to taking different shapes. The different data schemas are starting

points for possible designs that speed up access based on the pattern of access of
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pieces of data. The benefits are apparent in the Baas thesis where a database taking

the form of a graph network quickly answers a point-to-point distance query

traversing a transportation network.

Scientific Data File Formats for GIS

NetCDF files, as an example scientific data file format, are unlike relational

and NoSQL databases in that the files do not have a database management system

attached to them. Data within netCDF files consist of sets of indexed

multidimensional arrays. While preparing a netCDF file, before a variable can be

stored, each dimension, such as the y index in a grid or a valid time, are first created

within the netCDF file. These created dimensions can be set to either be limited, or

occurring within a range, or unlimited, a dimension increasing in length, as with

progression in time. Each possible value a dimension could take is attributed an

index, from zero to the number of unique values the dimension can take. NetCDF4 is

a subset of HDF5 technology with netCDF4 conceptually a combination of netCDF3

indexing and HDF5 file hierarchy.

There are a number of articles from the past decade covering projects which

take gridded data in an HDF4or HDF5 scientific data file format and convert them

into a raster format desktop GIS programs can readily use to do analysis and

modeling (Zhao, et al. 2011; Bachoo, et al. 2008; Abdella and Alfredsen 2010, etc.).

These are attempts to bridge scientific or meteorological data between the

atmospheric and other science fields for use in the GIS field. The end product to the
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conversion process usually consists of standalone spatially referenced rasters or

rasters in an ESRI raster catalog. There are weaknesses in this approach if this

converted data is to be used in further modeling though. These weaknesses include a

lack in ease of use in management and retrieval of numerous inputs if modeling is to

be done as well as speed issues in the process required in performing those

calculations in a typical GIS.

A collection of a large number of rasters is in general unwieldy, hence the

larger atmospheric and science community's usage of scientific data formats.

Retrieving needed temporal data slices through indexing by time is also difficult,

because unless raster bands are used, each raster is limited to a single slice. Raster

catalogs in ArcGIS partially solve this problem with time-based lookups. Still

numerous records each containing a single hour's worth of data must be looked up for

each variable and for each model day.

As mentioned earlier in this document, spatial data in a GIS must be checked

to see if each raster's geometry directly overlays to perform clean raster algebra.

Since the grid system is pre-defined checking spatial registration of layers should be

unnecessary. An alternative approach available to ArcGIS is converting raster data to

arrays in Python scripts before calculations using the provided ESRI Python function

to do so. At some point in the conversion process of this data from the original GRIB

file format to raster the state of the data was closer to already being arrays in memory.

It does not make sense to complete a conversion process only to reverse part of that

process in order to perform repetitive calculations for modeling. Part of the process
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would beperformed again to store model output in converting output arrays to raster

and again setting the spatial registration. Storing and processing the datain arrays

avoids the spatial registration of all of the inputdata in the conversion process and the

spatial registration of all output data in addition to the conversion of raster data values

to array data values.

Chosen Technologies

Because of the diversity of options when selecting from storage technologies,

and the time required to implementeach technology, three were chosen to implement

and compare. The superset of technologies considered included Relational Database

Management Systems, NoSQL databases, and scientific file formats. One technology

per technology superset was chosen. Rationale behind choices supported by

knowledge of the features of the technology is given below. The following

Methodology chapter will then detail how these technologies are implemented.

PostgreSQL: A Relational-Database Management System

PostgreSQL was chosen to represent Relational Database Management

Systems(RDBMS). In choosing a RDBMS solution for a GIS, consideration was

given to the fact that Western Michigan University's Geography Department has

access to ESRI's ArcSDE technology. ArcSDE serves as a bridge between ArcGIS

and the chosen relational database. Both attribute and spatial data are stored in the

backend database and ArcSDE manages the spatial properties of that data. Since
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ESRI products dominate the GIS software market in the US, it makes sense to limit

the relational database choices for this analysis to those which ArcSDE can connect

to. Doing so enables visualizationof the data throughArcGIS without transforming

the data. This removes MySQL from one of the choices, as ArcSDE cannot connect to

a MySQL database. Remaining choices ArcSDE is able to use as a backend are 1MB

DB2,1MB Informix, MS SQL Server, Oracle, and PostgreSQL.

PostgreSQL is able to store gridded data in a simple multidimensional array

datatype. Comparing database packages, at the time of this document, Microsoft SQL

Server does not yet offer any comparable array datatype. Oracle contains three

different data-types able to store arrays, but the version suited for larger amounts of

data consists of nested tables. Use of Oracle for array data would involve creating a

system more complex than needed for the task at hand.

Oracle, IBM DB2, and IBM Informix require license fees. PostgreSQL is free

and open source. For the ability to store arrays and being able to connect to an ESRI

ArcGIS ArcSDE server instance PostgreSQL was chosen as the representative

RDBMS to be compared against the representative NoSQL database and scientific

data file format.

MongoDB: A NoSQL Database

A document store type of NoSQL database has features able to serve the data

involved in a crop disease forecasting system. Other possible NoSQL alternatives

include the column-family store and graph database. The column-family store seems

28



www.manaraa.com

overly complex for use in this system because each piece of weather data in the

system has only one set of dimensional attributes. Column family stores excel at

applications where pieces of data have multiple repeating attributes. Lacking multiple

instances of metadata, a table in a column-store for a crop disease forecasting system

would look like one in a relational database. Graph databases are suited for data with

networked schemas like a social or transportation network. Unlike the column-family

store and graph database the document store offers a flexible document paradigm

where time attributes and related metadata can be stored in fields within a document

and the actual data can be stored alongside it. Since this is a typical problem for

forecasting, we select document store type as our example.

Although there are quite a few alternatives the two most popular types of

document store NOSQL type seems to be MongoDB and CouchDB. Both of these

technologies were created first and foremost to serve data over the internet. The

developers of CouchDB had a focus of CouchDB as not only a repository of data but

also a web server to serve that data. For CouchDB, like most document stores, access

is mostly done through HTTP language. Internet documents containing HTTP

language are used as the Application Programming Interface (API). MongoDB as an

alternative is meant to be separate from the web server. APIs available to developers

include most of the programming and scripting languages in use right now Since

code is used to generate substantial model output in a crop disease forecasting system

MongoDB is more suitable than CouchDB as a document store applied to a crop

disease forecasting system.
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NetCDF: a Scientific File Format

NetCDF4 was chosen from among alternative scientific file formats such as

GRIB and HDF5. Forecasting data is issued from the National Weather Service in the

GRIB format. The GRIB format has a weakness of storing data only in two-

dimensional slices. Ideally data would be retrieved in chunks rather than individual

time-slices. NetCDF4 contains a subset of HDF5 and actually writes HDF5 format

files. Both can access multidimensional chunks of data. However HDF5 lacks shared

dimensions in its standard data model. NetCDF4 enforces dimension declaration.

Variable data must take the shape of the declared dimension. For example, if x, y, and

time dimensions were declared, the cube shape of all data variables must be the same.

This insures consistency when slicing data at the same dimension for different

variables. For this reason the netcdf4 subset of HDF5 is chosen as the scientific data

file format to compare.

To meet requirements of a crop disease forecasting system able to add future

NWS grids and apply those grids to various crop disease forecasting models the

processing and storage methodologies of that system must feature expandability. An

expandability requirement in terms of storage can be best met by utilizing netCDF

files for storing gridded data. NetCDF is faster than comparable Relational Database

Management Systems for access of geospatial data (Cohen et al. 2006). NetCDF can

store spatiotemporal data for cell regions with indexes (Goodall and Maidment 2009),

an aspect that can be used to speed up processing. Spatiotemporal data is best

retrieved given both time and space subsets to save time, netCDF is able to do this
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(Weigel et al. 2010; Zender 2008). The hierarchical storage structure categorizing and

separating types of data offered by recent versions of netCDF should best serve

expandability requirements of the a proposed crop disease risk forecasting system.

NetCDF was developed to store large datasets of multidimensional data

including spatiotemporal data. The format is commonly used by governmental

agencies (NOAA, NASA, U.S. Navy, etc.) for storing datasets used in climatology,

meteorology and oceanography. NetCDF will likely be able to facilitate goals of a

crop disease forecasting system requiring expandability in terms of adding gridded

datasets and applying gridded datasets to various models.

Why Rasters or Shapefiles Were Not Used As Test Storage Platforms

Within the GIS modeling community standalone shapefiles, rasters and tables

stored in disk directories are commonly used in modeling because these standalone

files require low initial time resources to incorporate data into a system running a

model. By using standalone files the modeler can devote more focus on the model

itself and creation of a model processing system instead of having to be concerned

with how data is stored. This significant benefit to using standalone files can be

outweighed by their weaknesses during a broader operational system life cycle. A

system's life cycle could include initial planning, development, execution and the

refinement of the system running the model. Standalone files can be easily moved

from directories and be renamed, but raster files used within a model may be

numerous and it may be hard to differentiate names. Commonly if the project is large
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and prolonged, analysts working on a project change during a system life cycle.

Initial effort is required for each new analyst to understand where each file is or what

a data each file contains. Other weaknesses of standalone files include possible data

redundancy in tables, where for example, a weather station's latitude and longitude is

stored numerous times, once for each observation. Lacking a decentralized repository,

data in standalone files may reduce functionally in the application of the same

gridded data to more than one model as directory paths and filenames are not static.

It would be possible to create a system using shapefiles or rasters within a file

hierarchy but such a system would be cumbersome to manage, hard to implement for

expandability, and likely take longer to process model data. Ideally national data

would not be regionally subsetted beforehand. Subsetting the data at the time of

running the model in the case of shapefiles, for each time slice, involves two time-

consuming processing operations. First, the data would have to be extracted for only

the region concerned. This would probably work fastest if done by selecting correct

values of y, x indexes of each defined cell instead of performing spatial comparisons

of location where in the case of NDFD data at 5km resolution greater than 750,000

cells would be compared against a regional boundary shapefie for each hourly slice to

see whether each cell is in a region or not. Still this data would not be rectified with

other slices. Second, the data does need to be spatially referenced with other slices.

Traditionally for shapefiles this would be done with an attribute or spatial join. An

attribute join would likely be faster. Faster still would be to fill up a multidimensional

array by slice during the first operation scanning for correct y, x indexes. Once the
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data is in a multidimensional array, model computations should be processed more

quickly than by cell location. So the end goal should be to get the data into a

multidimensional array. Systems using a relational database, NoSQL database, or

scientific files as compared to shapefiles should have a less processing intensive path

to bring data into multidimensional arrays.

Python libraries able to work with raster data usually have functions able to

convert a raster into a single slice two-dimensional array. The slices can then be

stacked and sliced regionally. So working with raster data as compared to shapefiles

in this case may be a more viable option. On the other hand, managing a directory and

file hierarchy of all of a season's model data along with output is cumbersome in the

conversion of grids. Either incorporating the metadata into file names or within the

raster's own schema is both cumbersome as well as increases redundancy. The set

bins used for categorized data of PostgreSQL, NoSQL, and NetCDF files removes

most of the redundancy of metadata, as for example a temperature grid inside a bin

containing temperature grids by the bin's definition would have Fahrenheit units.

Another option is using an ArcGIS raster catalog. Querying the needed

dimensions along with a sort would yield an ordered selection of the catalog. An

iterator would then in turn take each record and retrieve the raster's logical location in

storage then load that raster, convert it into a two-dimensional array, and stack

subsequent rasters. A downside to using raster catalogs is individual areas or pixel

stacks cannot be directly queried without first querying by table attributes the entire

raster. Raster algebra could be used instead of algebra done on mutli-dimensional
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arrays, but then the rasters have to be lined up first and certain operations cannot be

easily done with raster algebra, where the sequence of values at certain locations must

be taken into account.

Generally the focus should be using the gridded data in a way that utilizes the

property of particular NOAA grid specifications in that after the specification is

made, it does not change. Spatially referencing a grid in raster algebra or doing a

spatial join with vector data should not be needed because it is known that the data

overlays. Spatially referencing each shape is an expensive operation given the number

of times it would be done for all of the time-slices. For this reason common GIS

storage and processing method in commercially available packages is not suitable for

this volume of data processing to be done in a timely manner.
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CHAPTER III

METHODOLOGY

This section will explain the methods used to develop, test and compare the

three chosen alternative storage technologies. The logical data structure,

optimizations, and a general access pattern for each of the technologies will be

described. Comparisons are made among the technologies of training two crop

disease forecasting models that vary by spatiotemporal scales. The impact of the size

of data chunks retrieved during access and processing of queries is examined with

respect to indexing data into subsets by region and time.

Methods for the PostgreSQL System

PostgreSQL: Logical Data Structure

The data structure in PostgreSQL (Appendix A) includes tables holding

forecasting, validation, and derived gridded data along with various metadata.

Forecasting and validation data are stored in two-dimensional arrays in the size of the

national grid within records of appropriate tables. As some forecasting data can take

the form of categorical descriptions of forecasted weather types, such as lightning

storms occurring with rain, a field to hold two dimensional text arrays is also declared

in the tables. For any record that contains numerical data within an array the text

array would be empty. Empty arrays in PostgreSQL only use the space for a data
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pointer so there is not a significant storage cost incurred to be able to handle text

arrays in addition to numerical arrays.

The Validation table contains associated metadata including the valid time for

each two dimensional slice. Both the reference time (when the forecast was made)

and the valid time (when the forecast is applicable) are stored for forecasting data. A

dataset field acts as a foreign key to the Dataset table. The Dataset table stores

metadata about a given dataset. Any metadata about a dataset can be stored in a text

string containing a JSON record. JSON (Javascript Object Notation) consists of an

extendable record. This field could store additive metadata about a dataset including

the issuing agency and any other notes. The var field is a foreign key to the Variables

table. The Variables table can contain metadata about the variable and link the

variable to the originating dataset. Potential metadata related to a variable could

include the timestep information about the variable. If the variable contains timestep

notes whether the accumulations occur before or after a valid time could be indicated.

This metadata can be assessed by those managing or running models and should

reduce confusion related to what the variables are conceptually.

The tables used to run models include: DerivedParams, Model_Params, and

Model. The DerivedParams table can hold derived in-between and model output

data contained in arrays within records. These arrays are associated with region, crop,

and model. This schema allows the derived grids to be associated with both a region

and a crop. In some model applications a mask can then exclude areas not growing

the crop of interest. Descriptive metadata about a single parameter from a single
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model can be stored in the Model_Params table and can be used similarly as the

above mentioned Dataset table and Variables tables storing respective metadata. The

Model table contains metadata about a given model.

Cells ofNational Grid and Cells of Regions Grid tables are designed in a way

that ESRI ArcSDE can manage the spatial properties of individual cells making up a

grid. Table views made on the PostgreSQL server dynamically link forecasting,

validation and derived data from arrays to these records. Records containing

geometry can then be displayed in ArcGIS for Desktop without designing

programming tools to facilitate this. For this reason only two dimensional array data

slices are used for PostgreSQL-based system because designing table views to fill in

three-dimensional data to individual cells would be more difficult and complex and

possibly reduce model performance.

PostgreSQL: Optimizations

PostgreSQL optimizations include record indexing for each table by the fields

underlined in Appendix A. This allows faster lookup when querying by those indexed

records. B+-tree indexes, which speed up range queries, with querying for

forecasting times falling within a range as an example, are used. Queries for records

containing two dimensional data slices of a given variable within a given time frame

are fast using B+-tree indexes.
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Determining settings for optimized compression is not necessary. The

PostgreSQL server manages compression of all data stored. The system designer has

no control over what data is compressed or the levels of compression.

PostgreSQL: Data Retrieval During Model Runs

Executing each model relies on two researcher-written python code files. The

first file contains specialized code for an individual model. The second file, a library

of functions, can be used for various models and provides generalized functionality

for accessing grids within a PostgreSQL database. A separate open-source library

pyscopg is used to access and perform queries on the data on the PostgreSQL server.

The generalized steps for retrieval of a sub region from available national gridded

data are listed below:

1. A database connection object is made to reference the database. This is done
in the individual model's code.

2. The target region boundaries are queried from the database.

3. The model's local start time and end time is determined and then converted to

UTC.

4. Per each model input variable, a query is issued for the appropriate time
range.

5. The two-dimensional arrays from returned records are spatially trimmed by
regional boundaries retrieved in step two and are inserted into a three-
dimensional array at the temporally correct positions.

6. Linear interpolation for missing hours is done if necessary.
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Running models using PostgreSQL will differ from the MongoDB and

netCDF systems in that only single slices of national data would be loaded into

memory at a given time. This means that two-dimensional national coverages are

brought into memory and then trimmed spatially down to the region before more

individual slices are loaded. A system using this method requires less computer

memory to run compared to systems loading a three dimensional cube national array

before spatially trimming the array.

Methods for the MongoDB System

MongoDB: Logical Data Structure

MongoDB offers flexibility in representing data via the document store

NoSQL paradigm. All documents related to a single season are stored within a single

collection and that collection's sub-collections, stemming in a hierarchy from the root

collection store national forecasting and validation grid or regional derived model

output grids (Appendix B).

Metadata and documents containing spatial information about national

standard grids are stored in the root collection. To increase the optimization of lookup

indexes and to reflect epistemological differences, documents representing national

forecasts and validation were put into two different sub-collections. Documents

storing validation data need only an indicator of the time for which the data is

applicable. In addition to the time applicable, forecast data also needs a reference

time for when the forecast was made. Storing validation and forecast data in different
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collections allows an index to be created for validation data on the combined

{Datasetname, Variable, VLDDate} fields by avoiding containing unrelated forecast

records not having a the VLDDate field. If validation and forecast grids were in the

same collection, results from a search using the Datasetname, Variable, and VLDDate

index created with default options would contain results with null values for the

VLDDate field for all forecast documents, which would not be useful.

Designing a storage sub-system to serve data using a document store allows

for flexibility in design. Two versions of systems using MongoDB were created. In

both versions a validation document contains a multidimensional array of values for

one variable twenty-four hours deep with a UTC date stamp in the document's

ValidDate field. The versions differ by the way forecasting data is grouped together.

In version one all forecasting data for the same reference time for a variable is

stacked and stored together. In version one a forecasting document for most variables

contains around 157 hours of forecast grids made at the same reference time. This

includes hours of missing data within the stack as forecasts are provided for every

third hour for most of the variables. The second version of a system using MongoDB

does not store forecasting data in three-dimensional stacks with the same reference

time. Only single two-dimensional grid slices containing valid data is stored.

The rationale behind stacking forecast data in version one follows. Typically

crop disease risk forecasting models use weather forecasting variables with identical

reference times. To store the range together in one chunk means that all the

forecasting data relating to a single variable can be retrieved in a single data lookup.
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If the data were stored in hourly slices, the system would be required to do hourly

lookups and retrievals. To have the validation data in twenty-four hour UTC chunks,

however, should mean a maximum (n + 1) lookup and retrievals per variable for per

day, with n being the number of days of data needed. A reduction in lookups and

chunk accesses should greatly reduce retrieval times when models run.

Ideally each grid would be stored in the same document as that grid's

metadata. Unfortunately MongoDB imposes a 16 megabyte (mb) limit for each item

within a document. Some national grids after compression are larger than 16mb so

they cannot be stored in a single document. To deal with items larger than 16mb

developers of MongoDB incorporate a pseudo-file based system of storage. The

pseudo-file system, GridFS, divides an object, in this case the multidimensional array

into chunks 16mb or less. Information about the array is stored in a '.files' sub-

collection and the data itself is stored in a '.chunks' sub-collection with lookup ids

bridging the two. This schema adds at least two lookups for national variables but

large data reads remain at one or two logical data chunks. Regional reads and writes

will tend to be smaller than 16 megabytes and will remain at single chunk reads.

To enable a multi-model and multi-region crop disease forecasting system

documents containing derived data have a field indicating which model the output

variable relates to. By including a region field the same model can also be applied to

the same crop type in different grid-defined regions of a country, possibly storing

regional masks for non-important areas within a region. The model field can then be

used to group variations or versions of models, i.e. different parameters for
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forecasting and validation or sets of possible neural network inputs. The

parentdataset field can be also be used to vary the source input while trying the

different above variations in the model.

MongoDB: Optimizations

Optimizations for MongoDB include lookup indexing and compression.

Indexing is done on particular fields marked by underlined keys within the schema

figure found in the appendix (Appendix B). The MongoDB server itself does not offer

compression so compression is achieved with the Python lz4 library. A previous

system I created with MongoDB as the storage technology used the zlib library for

compression. Use of lz4 in the versions created for this thesis proved to perform

compression and decompression much faster than the zlib library.

MongoDB: Data Retrieval During Model Runs

Executing each model relies on two researcher-written python code files. The

first file contains specialized code for an individual model. The second file, a library

of functions, can be used for various models and provides generalized functionality

for accessing grids within a MongoDB system. Region definitions are stored in

documents contained in model collections using four-corner bounding indexes.

The generalized steps for retrieval of a sub region from available national gridded

data are listed below:
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1. A database connection object is made, referencing the collection containing
the season's gridded data. This is done in the individual model's code.

2. References to locations of sub-collections within MongoDB containing
forecasting, validation, and model output are sent to the function to run the
model.

3. A model's start time and end time is determined and then converted to UTC.

4. The function can either 1) piece together a filename or filenames to do a direct
lookup in the files sub-collection or 2) do a lookup by [Dataset,
VarParameter, REFTime] to get the MDA_Id representing a record in the
files sub-collection.

5. Using either of the two lookup methods the multi-dimensional array chunks
are first retrived from MongoDB and then decompressed and read into a
numpy Python multi-dimensional array data-type.

6. Within Python, retrieved chunks are pieced together, the national data is
trimmed to regional, temporal linear interpolation is done if requested, and
time overhangs for hours which are not needed are then trimmed.

The lookup/retrieval of large initial national multi-hour chunks of data in a

MongoDB system is less complex than either the system based on PostgreSQL or

netCDF (the netCDF description follows). A trade-off is, in especially the first version

using MongoDB, that larger chunks are loaded into memory and then have to be

trimmed. Trimming the data in Python involves additional memory and processing

overhead. As designed, the Python process running the PostgreSQL system only has

to subset regional axes of single slice. After the data is first retrieved, the Python

process using the netCDF system subsets neither region nor temporal axes. Loading

larger chunks in the MongoDB system creates a greater initial RAM requirement for

the modeling process running in Python. However, even with the larger memory

requirement and the extra subsetting needed, the additional time required to do so will
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likely be small becauseof the speedof CPUpaired with RAM processing and access

operations.

Methods for the NetCDF System

NetCDF: Logical Data Structure

Tree diagrams (Appendix C) show the content hierarchy of one season of data

within a netCDF file. A number of leaf nodes are not filled and act as placeholders for

data possibly used in future modeling. Additional branches within a hierarchy could

be appended based on future needs.

Forecasting and verification data are logically separated even though the same

grid specification is shared between the two. In terms of attribute dimensions, the

only difference between forecasting and verification data is that verification data does

not have a reference date; both forecast data and verification data have a date for

which they are valid. Regional model results for different crop disease forecasting

variables are also saved on different branches with their own subset of x/y grid

indexes. This introduces very small amounts of redundancy in stored index values in

exchange for being able to functionally keep validation and forecasting data on

separate branches of the hierarchy.

Declared variables in the diagrams are marked by the numbered index of the

dimensions attributed to them. A branch containing gridded data also contains gridlat

and gridlon variables, each with x/y grid dimension indexes. These can be used to
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create shapefile and raster versions of the data as well as feed spatially auto-

correlated regression tools or kernel-based transformation functions.

NetCDF: Optimizations

Chunking and data compression are two optimizations the system uses, both

set at time of declaration of variables. The chunking parameter sets minimum

multidimensional blocks of values physically stored sequentially together within a

storage medium. Data compression reduces data read time and storage footprint while

increasing required processing resources. The chunking and data compression options

used will be described in turn in the next two subsections.

Chunking

While running regional models from national data, regional subsets are sliced

from the superset by y, x, and time dimensions. Without chunking, data is physically

stored in index order sequentially. When a subset of the multidimensional variable is

requested within the physical storage system, if it is a traditional spindle-based hard

drive, the read head of the drive has to make large non-sequential access jumps from

where data related to the sliced maximum indices jumps to the data related to the next

minimum indices to where needed data is physically located. Dimensional chunking

allows data to be stored in chunked order rather than only index order.

To speed up access times, ideally chunks reflect the typical dimensional sizes

of the slices requested at read time. Since need sections of grids will be different
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depending on the region, not partitioned into equal rectangles, moderately small

subsets of chunked areas will be used for this study. This reduces the chance of

having to read a large overhang of grid cells occurring with a large remainder of edge

chunks. For forecasted grids the reference time dimension, when the forecast was

made, and the valid time dimension will each be single-index chunked. Data will not

be chunked by time.

Data Compression

The system will use zlib compression on all variable data handled by the

netCDF library. Compression of the data will be lossless without early truncation of

floating point values. This reduces access time but may slightly increase processing

time. Storage access tends to bottleneck systems, so this exchange likely improves

overall performance.

NetCDF: Data Retrieval During Model Runs

A forecasted temperature for a given cell would have dimensional attributes

including forecast reference date, forecast valid date, center point latitude, center

point longitude, and cell id. Upon data retrieval, subsets of area by longitude and

latitude as well as other dimensions are stored in x and y array slices. Considering this

aspect of netCDF, gridded data can then be processed via indexes in multidimensional

arrays within the Python programming language. Arrays vertically register by x and y

dimensions, similar to how data lists for a point location create a data vector.
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Processing this way would be similar in ways to how climate modeling is done for

cell centerpoints in climate and atmospheric sciences on grids with a standard

geometry.

Use of a GIS software package, ESRI's ArcGIS, would take place in this kind

of processing methodology at three times within the development process and

forecasting cycles. First, occurring once at the introduction of a new grid standard, the

national NWS grid would be indexed by cell and then referenced by region. Later

data retrieval of regional subsets needed for separate areas related to particular crop

diseases is possible because of this step. Secondly, non-forecasting data, such as

generalized climate and recent actual observations at points that are a part of a crop

disease forecast still need to be interpolated once for new climatology data and

cyclically for observational data. This is done by ArcGIS with output geometry of

grids ideally coinciding with the regional subset format of the standardized NWS grid

for a given crop disease risk forecast. Thirdly, after processing of inputs by an

artificial neural network or separate statistical methods, visualization and distribution

of crop risk forecasts are done using a GIS. Utilizing the standardized grid to pre-

establish data vectors also cuts out an additional middle process of a GIS having to

format inputs into vectors usable as inputs for the artificial neural networks or other

statistical methods. Outputs themselves will be stored within the same netCDF file as

forecast inputs. Those outputs can then be sub-setted by dimension into

multidimensional arrays usable as input in artificial neural networks or other

statistical method processing.
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As an example, given a single growing season of data, a time dimension

would be defined, such as the number of hours since an arbitrary standard reference

time. The first index value of the first time dimension would always be 0, stored at

that index location would be the difference in the number of hours since the standard

reference of the first hour of the season. In this way, a one dimensional array,

representing a single dimension, in this case time, can have values stored at indexes

with those values compared to a target time range when a variable slice of a multi

dimensional array is later requested when forecasting.

During a request, if the time values at the index location meets the criteria of

the desired times at the times' associated indexes, values for that requested

multidimensional variable will be returned. In this way instead of a key field within a

record of a table to be queried, (as in a relational database), data already indexed for

each dimension is stored. Range (greater than/equal to and less than/equal to) queries

of desired dimension values as well as equality queries for single slices can be

answered quickly without maintaining separate indexes as is standard in relational

databases.

After dimensions are declared and values are attributed to dimension indexes,

variables to store data are then declared. On declaration a variable is given a name, a

datatype, and an ordered set of dimensions associated with it. Order of dimensions

once declared cannot change. Metadata for the new variable can be set through

variable key/value pairs. Any key name not already used by the variable can be

chosen to store metadata. For example, a key 'units' is usually set with the value

48



www.manaraa.com

containing a text string containing a description of the variable's units. Later, a

program running a crop disease forecasting model can query both the order indexed

dimensions occur in addition to any metadata set at declaration.

Executing each model relies on two researcher-written python code files. The

first file contains specialized code for an individual model. The second file, a library

of functions, can be used for various models and provides generalized functionality

for accessing grids within a netCDF file. Aside from providing access, the generalized

library also contains time conversion, variable unit conversions, Grib file to netCDF

file conversion, regional slicing tools, region definitions, gridded statistics, and

gridded model output formatting and conversion. Region definitions are done by max

and min latitudes and longitudes.

The generalized steps for retrieval of a sub region from available national gridded

data are listed below:

1. A data access object is made referencing the tree node within the netCDF file

containing the gridded data. This is done in the individual model's code.

2. A RegionSlice object is made using both a keyword of the desired region and

the above access object. The RegionSlice object contains metadata about the desired

region later used to slice the national dataset.

3. A model's start time and end time are determined and then converted to UTC.
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4. The VariableSlicing function is called and returns necessary data based on

passed slicing function parameters. Parameters to the VariableSlicing function include

the Access object made in step 1, the name of the variable to be returned, and a

boolean indicating whether temporal linear interpolation is necessary, the RegionSlice

object made in step 2, and the start and end times determined in step 3.

The VariableSlicing function was made in a way to be able to access variables

having different dimensional attributes. As long as references to all required

dimensions are passed to the function, the function accessing the dimension order

stored in the netCDF file is able to arrange the requested dimensions properly. A main

focus in creating the function was to access both forecasting data (with a reference

time for when the forecast was made) and validation data (lacks a reference time)

with the same function.

One possible weakness is that the VariableSlicing function only handles lateral

slices greater than a single width in only the y, x, and valid time dimensions. Unless a

comparison is needed between forecasts of different reference times this should not

be a problem.If a comparison between reference times is necessary, the Variable

Slicing function could be called twice, using two different reference times.

Specifications for Designed System Comparison

Hardware

The computer running the test models is an up to date higher end personal

computer as of 2013. It has an Intel i7 processor model 3770-k and 32GB of ram.
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Drives to retrieve and store model data include a 3TB Seagate Constellation CS drive

and two 256GB Samsung SSD 840 Pro drives. The drives are connected via a LSI

9271-i8 RAID card. The hardware cost of the system would be under $1900.

Three tests per test model will be done to see the impact of type of storage

hardware used has on the speed of running models based on the storage method. Raw

speed of the Seagate drive should be around seven times slower than the Samsung

SSD. Certain storage types may derive different benefits from use of an SSD drive

because of different patterns of access. The RAID -0 pair of SSDs should roughly

halve raw access times of the single SSD. RAID-0 is a technology that groups two or

more disks of the same type together and utilizes each drive's read/write controller to

concurrently write successive units of data.

Software

The operating system installed is Linux Mint 14.1 (MATE version). Python

2.7.3 will be used to run models. Python itself is a run time interpreted language

where some speed gains are lost by not utilizing optimizations possible with

languages that are pre-complied. Yet Python offers the numpy package. The numpy

package is able to process multidimensional array data quickly. Standard Python

programs are limited to running on a single processing core. This is a significant

weakness of the Python language in today's multiple core computer hardware. Python

derives other benefits from code readability and ease in model prototyping.
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Quantitative Assessment: Speed Tests

Three sets of speed tests varied by disk technology will be performed for two

different test models running four years worth of data deriving daily outputs for five

month seasons over four years. The test models used are described below.

Test Models Used

Initial Case Example: A Wallin Potato Model Forecasting Potato Late Blight

This first model requires twenty-four hour slices of relative humidity and

temperature variables. A binning of hourly relative humidity is partitioned by three

hourly temperature ranges with hourly accumulation in that bin if the relative

humidity at a location is over eighty percent. Based on the amount of accumulated

hours in a bin a total risk is assigned per location (Baker and Kirk 2007; Baker, Lake,

Roehsner, et al. 2012).

Second Case Example: Model Deriving Daily Inputs and Daily Target Output

For Training of a Neural Network to Predict Risk of Barley Head Blight

A model predicting head blight of barley was chosen as a second test model to

implement. The estimation model takes wide 240 hour slices of gridded temperature

and dew point from the Great Plains area to calculate a single day's estimation of risk.

The following operations are then carried out for the estimation model used as the

daily target output in training a neural network to forecast head blight of barley

(Bondalapati, et al. 2012):
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1. Relative humidity is found for all dew point values in the multidimensional

array given each temperature value.

2. The average temperature by location is calculated.

3. A wetness metric is calculated by first taking the relative humidity

multidimensional array and assigning True or False depending on whether the relative

humidity was greater than 90 percent. Then the sequence of relative humidity values

over the 240 hours are processed by location and is assigned a Wetness metric based

on the pattern of hours with relative humidity over 90 percent. The wetness term is

given bonuses whenever there are consecutive hours of relative humidity over 90

percent. An intermediate, the binary sum of relative humidity values over 90 percent,

is also saved.

4. The average temperature and wetness metrics are combined to determine a

Weibull value for the pair based on a Weibull distribution.

5. A cutoff is applied to the Weibull value to determine estimated risk.

6. The average temperature, relative humidity binary sum, wetness term, and

Weibull value for the day are then saved in the format of the respective test storage

system.

The head blight of barley forecasting model utilizes both forecasting grids and

validation grids. 120 hours of validation data reflecting what occurred the first five
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days of a ten day window and 120 hours of forecasted datareflecting what is

predicted to occur in the second five days of a ten day window is combinedto

forecast risk for the tenth day. The steps are somewhat similar to operations done for

the above validation data except five days of forecasting temperature and relative

humidity data is first accessed and then appended to the first five day slices of the

above temperature and relative humidity verification data. The steps carried out from

the 3rd step onward are the same.

This test model was chosen to test the storage methodologies' abilities to

moderately scale for larger model timespans along with a larger spatial area, lending

the trials to retrieval and processing of more data. The test model also contains a

Wetness calculation that would be difficult to do using a multi-dimensional array

operation. While performing the wetness calculation the array must be sliced

spanning the time axis by each location. Many long thin slices must be made.

Speed Test Description

For each of the two models, for each of the three chosen data storage

methodologies, for each of the three storage hardware categories the models will be

run over four growing seasons, 2009-2012, each season consisting of five months.

Initial states of the hardware will be the same with the computer booted and in the

case of PostgreSQL and MongoDB servers will be started an hour prior to the trial

allowing for any indexes to be loaded.
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Qualitative Assessment: Expandability Test

The amountof time resources neededand general ease of adding the model

forecasting for headblightof barley after the potato late blightmodel is complete will

be considered. Adding the secondmodel will involve adding a region to the system

and finishing the model by coding the model aided by researcher created libraries

used to access stored data used with the first model.
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CHAPTER IV

RESULTS AND DICUSSION

This chapter will first describe benchmark quantitative results differing by

crop disease forecasting model, storage technology used and storage hardware. Then

those quantitative results will be discussed in turn, grouped by storage technology.

Thirdly qualitative results will be covered. Lastly a concluding discussion will be

given. Even though each storage technology works quite differently, performances

when using a traditional platters-based hard drive were somewhat similar but with a

few interesting differences. Therefore, quantitative factors become important when

choosing a storage technology for a crop disease risk forecasting system.

Quantitative Results

This section first displays quantitative benchmarks of running two different

models varied by different storage methodologies as well as storage hardware. Two

models were initially chosen to test performance of the different storage

methodologies chosen. Requiring different sizes of spatiotemporal dimensions by

model indicate how well storage methodologies scale as larger dimensions increase

the amount of data needed to be retrieved.

A model forecasting potato late blight risk for a Michigan region is the first

test model used. A rectangular area consisting of 18,354 cells and 36 hours worth of

forecasting and observed gridded data is retrived each day. Five month growing
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seasons are assumed with derivation of daily risk forecasts and validation estimates

provided for four growing season. The two needed variables are temperature and

relative humidity and both sets of validation and forecasting data is retrieved.

A second test model involves deriving daily inputs and deriving a daily target

output of head blight of barley risk to be used to train a neural network for a tri-state

barley region including North Dakota, South Dakota, and Minnesota for five growing

seasons consisting of four months each. A rectangular area consisting of 39,446 cells

and 240 hours worth of observed gridded data is used. A rectangular area consisting

of 39,446 cells and 120 hours worth of forecasted gridded data is used. Like the

model forecasting potato late blight risk the two needed variables are temperature and

relative humidity. The spatiotemporal resolution of needed data is much larger for a

model forecasting head blight of barley. To reduce repetitious loading of observed

data, as a subsequent day uses 226 hours of data needed for the previous day all

validation data needed for a season is loaded at the beginning of processing of that

season.

The tables below first show the total time required to run four seasons of a

potato late blight model and then show the total time required to run four seasons of a

head blight of barley model. Times are in decimal minutes. In previous sections of

this thesis I described, introduced and addressed storage technologies in the order of

likely decreasing familiarity and increasing learning curve a geographer would have

with each of the formats. In the results section alphabetical order is used.
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Table 1. Time Required to Run a Model Forecasting Daily Risk of Potato Late Blight
over Four Years for a Five Month Season for an Area Covering Michigan
Times are in decimal minutes.

Storage Type Spindle Drive Single SSD Two SSD

MongoDB(vl) 82.14 75.64 74.67

MongoDB(v2) 42.08 42.32 40.09

NetCDF 43.06 31.78 30.38

PostgreSQL 43.68 41.64 41.38

Table 2. Time Required to Derive Daily Inputs and Daily Target Output to be Used to
Train a Model Forecasting Risk of Barley Head Blight for a Five Month Season over
Four Years for a Tri-State Area

Times are in decimal minutes.

Storage Type Spindle Drive Single SSD Two SSD

MongoDB(vl) 165.75 160.70 159.88

MongoDB(v2) 169.40 174.40 170.46

NetCDF 193.97 154.43 153.87

PostgreSQL 156.98 155.67 153.85
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Quantitative Results Discussion

MongoDB Version One

The worst performing storage solution in processing the potato late blight

model is version one of a system using MongoDB. During systems design I believed

that due to fast access of data through the MongoDB server and the fast

decompression library used could overcome the loading of more data than was

needed per day. Loading the 157 hours stacks of forecasting data while only a 28 hour

subset is required to interpolate missing hours within the 24 hour span of data used

for the forecasted day did not prove to result in a fast system.

Low performance may also be due to the pymongo driver's requirement to

turn MongoDB documents into Python dictionaries internally within the driver when

the data is accessed. This is a slow process and is done for large amounts of data. In

addition to this, once the data is retrieved and decompressed it takes the form of a text

string which is then converted into an array. This also takes time. Both of these steps

are not necessary for the systems which use netCDF or PostgreSQL.

Where the system using MongoDB version one suffered from slowdown in the

case of the potato late-blight model having to load excess data, in the case of the

barley head blight model, because five days of forecasting data is needed, just about

all needed data is loaded when a temporal stack of forecasting data is accessed.

Despite being the slowest for the potato head blight model this makes version one of

the system using MongoDB second fastest when using a traditional spindle drive in
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running the head blight of barley model.

MongoDB Version Two

For running the potato late blight model my version two of a system using

MongoDB is fastest when using a traditional spindle hard drive. Slices of forecasted

data were stored as hourly slices instead of as stacked arrays. Nine hours are each

loaded to be able to interpolate the missing hours needed within a twenty-four hour

period. This avoids loading more data than needed.

The time recorded for version two of a system using MongoDB with a single

SSD drive is a little unusual. This benchmark should be a faster than using a

traditional spindle drive. It is possible that the pymongo driver connection is

overwhelmed with the amount of data throughput. While running the scripts using a

spindle drive with version one of the MongoDB system I noticed that after multiple

successive accesses through a single python GridFS object slowdown would occur

after roughly the fortieth day of a growing season. At this point the buffers attributed

to the GridFS object were not clearing before successive accesses. To fix this issue,

before running a season, a pool of GridFS objects were created. Successive access

would use a random GridFS object from this pool. This gave time for other GridFS

objects to clear their buffers. To possibly remedy slowdown when using a single SSD

drive a pool of pymongo connection objects may have to be used. Currently the

multiple GridFS objects work through a single pymongo connection object and this

may introduce slowdown.
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When running the head blight of barley model the system using MongoDB

version two suffered from slowdown because of the large number of single hours of

forecasting data that was loaded. For each hour, the process of bringing compressed

text strings into python arrays is carried out. This is slower than MongoDB version

one because even though version one's data amount of a single set of fives days of

forecasting data with a single reference time is larger, per variable, only one

conversion to python array of forecasting data is done.

NetCDF System

NetCDF is the second best performing storage solution when using a

traditional spindle drive when running the potato late blight model and the best of all

cases running the model when using multiple SSD drives. Unlike the MongoDB

system the netCDF system does not require a process of converting text to in-memory

python arrays.

There is also management overhead for both the MongoDB server and the

PostgreSQL server. Data management overhead is more significant in the

PostgreSQL server. A lack of database management equates to speed gains for the

netCDF system. Unfortunately, the lack of a database management system means that

in a system processing multiple models simultaneously, if the netCDF file that

contains output data is being written to, other models cannot be writing to that file

simultaneously. A solution to this is containing model output for different models in

different netCDF files. This may introduce unwanted file-system complexity, as sets
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of outputs would multiply as different models are added to a crop disease forecasting

system.

Use of SSD drives significantly sped up access in a system using netCDF.

National data is stored on disc in these files in a grouped row-column order with

pieces of a single temporal coverage consisting of tiles. Using a traditional spindle

drive involves drive read head jumps across spatially unneeded data when a regional

subset is accessed from national data. Although the time of a single jump is very

small multiple jumps add up. The use of SSD eliminates mechanical read heads and

non-sequential data is accessed as fast as sequential data. Gains are reduced when a

second SSD drive is added as the traditional read head factor had been eliminated on

use of the single SSD drive.

A negative of the netCDF based system is data for missing hours in forecasting

data is loaded as part of the three dimensional cube subset for the model day and

region. This may make the netCDF based system slower but does not impact the

system to the point of it being significantly slower in the case of when the potato

model is run.

In running the head blight of barley model netCDF again suffers from drive

head seek time eliminated with use of an SSD drive. For this model a system using

netCDF and a spindle drive is slowest. When a SSD drive is used it becomes second

fastest by only one-hundredths of a decimal minute. Again netCDF includes the

loading of missing forecasting values in the three dimensional y, x, valid time cube.
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PostgreSQL System

The PostgreSQL system is comparable to the other two systems. The three

perform well when running the model forecasting late blight of potato. PostgreSQL

suffers from data management system overhead but does not require the conversion

into Python objects the MongoDB system does. This is the oldest most mature

technology of the three storage alternatives and the python libraries created to access

server data are efficient and backed by fast C libraries with python code calling those

C libraries.

PostgreSQL does not significantly benefit from use of SSD drives. This may

be due to database management system overhead. There may also be a buffer speed

issue as in the MongoDB system.

PostgreSQL is the fastest using a spindle drive for the head blight of barley

model and becomes the fastest of all cases despite database management overhead.

This is likely because of the storage of single slices prevents the need of retrieving

hours with missing data. Missing hour data is loaded in the case of the netCDF

system and the MongoDB version one system, but not the MongoDB version two

system.

Qualitative Commentary on Expandability

NetCDF was found to be the most cumbersome to use as data variables have

to be defined in code or with a command line utility before a model could be added to
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a system processing multiple models. Despite being the fastest in most cases, this

should taken into account when considering netCDF as a potential storage solution.

The MongoDB and PostgreSQL systems all incorporated single repositories

for each forecasting, validation, and derived data. For this reason no additional code

was needed to store derived regional data. Only region definitions need to be added

and the models coded before models can be run.

The MongoDB systems offers additional flexibility the PostgreSQL system

does not. A single MongoDB document can potentially store references to multiple

derived outputs of a model. This includes derived output sets used as inputs for a

neural network model. If a neural network model requires more than a few inputs,

storing these inputs as separate references within the same document is quite useful.

This was also the case of a model incorporating linear regression of an input variable.

The cropdisease forecasting system developed using MongoDB stored the by grid

cell values of a regression in the same document. This included the R-value, slope, y-

intercept and p-value.

The version two system using MongoDB differs from the version one system

in that forecasting data is stored in single slices. This may aid in reduced time to

implementation and lowered storage space requirements if implemented systems only

require storage of a smaller subset of data. For this reason apart from the speed gains

of the crop disease forecasting system using MongoDB version two is preferable to

version one in terms of expandability.
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Conclusion

It was expected the inherent capabilities of scientific data files, including

internal descriptive attributes and tagging of data, and speed of retrieval of subsets of

data, the use of a scientificdata file format would likely best meet speed requirements

of desired data storage and processing methodologies. As discussed in the rest of this

chapter what was expected was not strictly the case. When using default chunksizes,

netCDF consistently outperformed the other technologies only when using an SSD

drive. It was comparable to the PostgreSQL system when using the large

spatiotemporal data chunks involved in the head blight of barley forecasting model. It

was thought that in terms of expandability, the NoSQL data store should offer

flexibility in the data schema to be used leading to desired expandability. This was

true in the test cases for systems using MongoDB as well as PostgreSQL. Although

different chunksizes for netCDF files were not tested, with chunksizes potentially

impacting speed based on different models, the speed gains seen with netCDF

systems while using a traditional hard drive did not offset the expandability reducing

requirement of having to declare newly derived variables when using netCDF.

MongoDB version two, netCDF, and PostgreSQL were similar in speed in

most cases. Each storage technology had strengths and weaknesses impacting

performance. The time needed for array conversions in the case of the MongoDB

systems offset the beneficial property of NoSQL database's less database

management overhead. Non-optimized chunk sizes impacted the performance of

netCDF files when using a mechanical hard drive in the case of forecasting risk due

65



www.manaraa.com

to head blight of barley. PostgreSQL was generally fast overall but still reaches a limit

due to database management overhead. Because of strengths and weaknesses of the

technologies having performance impacts making system running time differences

resulting from storage technology roughly small, if these findings were used as

decision support for a choice among tested storage technologies the qualitative factors

should significantly impact the decision.

If overall system speed were paramount I would choose netCDF as the

preferred storage solution and attempt to further increase that speed by choosing good

sizes for on disk dimensional data chunks to further improve access times. If research

team personnel resources were small I would choose PostgreSQL as the preferred

storage solution as the code needed to use the PostgreSQL library is simple and does

not require additional coded tools to view inputs and outputs in ArcGIS Desktop if an

ArcSDE license is available. I would use the MongoDB version two if new creative

model development were paramount as the MongoDB document paradigm allows for

flexibility in stored data contents. During model development data intermediates can

be stored together in a related document as those intermediates are created.
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Appendix A

Tables in a PostgreSQL Database for Gridded Crop Disease Forecasting
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Appendix B

Document Hierarchy in a MongoDB Datastore for Gridded Crop Disease Forecasting
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Appendix C

One Growing Season's NetCDF File
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